{ "id": "2001.11304", "version": "v1", "published": "2020-01-30T13:28:55.000Z", "updated": "2020-01-30T13:28:55.000Z", "title": "An improved bound for the dimension of $(α,2α)$-Furstenberg sets", "authors": [ "Kornélia Héra", "Pablo Shmerkin", "Alexia Yavicoli" ], "comment": "29 pages", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "We show that given $\\alpha \\in (0, 1)$ there is a constant $c=c(\\alpha) > 0$ such that any planar $(\\alpha, 2\\alpha)$-Furstenberg set has Hausdorff dimension at least $2\\alpha + c$. This improves several previous bounds, in particular extending a result of Katz-Tao and Bourgain. We follow the Katz-Tao approach with suitable changes, along the way clarifying, simplifying and/or quantifying many of the steps.", "revisions": [ { "version": "v1", "updated": "2020-01-30T13:28:55.000Z" } ], "analyses": { "subjects": [ "28A78", "05B30" ], "keywords": [ "furstenberg set", "hausdorff dimension", "katz-tao approach", "suitable changes" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }