{ "id": "2001.10265", "version": "v1", "published": "2020-01-28T11:10:41.000Z", "updated": "2020-01-28T11:10:41.000Z", "title": "On the exponential Diophantine equation related to powers of two consecutive terms of Lucas sequences", "authors": [ "Mahadi Ddamulira", "Florian Luca" ], "comment": "25 pages", "categories": [ "math.NT" ], "abstract": "Let $r\\ge 1$ be an integer and ${\\bf U}:=(U_{n})_{n\\ge 0} $ be the Lucas sequence given by $U_0=0$, $U_1=1, $ and $U_{n+2}=rU_{n+1}+U_n$, for all $ n\\ge 0 $. In this paper, we show that there are no positive integers $r\\ge 3,~x\\ne 2,~n\\ge 1$ such that $U_n^x+U_{n+1}^x$ is a member of ${\\bf U}$.", "revisions": [ { "version": "v1", "updated": "2020-01-28T11:10:41.000Z" } ], "analyses": { "subjects": [ "11B39", "11J86" ], "keywords": [ "exponential diophantine equation", "lucas sequence", "consecutive terms", "positive integers" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }