{ "id": "2001.10247", "version": "v1", "published": "2020-01-28T10:21:57.000Z", "updated": "2020-01-28T10:21:57.000Z", "title": "The $D_π$-property on products of $π$-decomposable groups", "authors": [ "L. S. Kazarin", "A. Martínez-Pastor", "M. D. Pérez-Ramos" ], "categories": [ "math.GR" ], "abstract": "The aim of this paper is to prove the following result: Let $\\pi$ be a set of odd primes. If the group $G=AB$ is the product of two $\\pi$-decomposable subgroups $A=A_\\pi \\times A_{\\pi'}$ and $B=B_\\pi \\times B_{\\pi'}$, then $G$ has a unique conjugacy class of Hall $\\pi$-subgroups, and any $\\pi$-subgroup is contained in a Hall $\\pi$-subgroup (i.e. $G$ satisfies property $D_{\\pi}$).", "revisions": [ { "version": "v1", "updated": "2020-01-28T10:21:57.000Z" } ], "analyses": { "subjects": [ "20D40", "20D20", "20E32" ], "keywords": [ "decomposable groups", "unique conjugacy class", "satisfies property", "odd primes", "decomposable subgroups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }