{ "id": "2001.10236", "version": "v1", "published": "2020-01-28T09:58:12.000Z", "updated": "2020-01-28T09:58:12.000Z", "title": "Duality for complexes of tori over a global field of positive characteristic", "authors": [ "Cyril Demarche", "David Harari" ], "comment": "40 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "If K is a number field, arithmetic duality theorems for tori and complexes of tori over K are crucial to understand local-global principles for linear algebraic groups over K. When K is a global field of positive characteristic, we prove similar arithmetic duality theorems, including a Poitou-Tate exact sequence for Galois hypercohomology of complexes of tori. One of the main ingredients is Artin-Mazur-Milne duality theorem for fppf cohomology of finite flat commutative group schemes.", "revisions": [ { "version": "v1", "updated": "2020-01-28T09:58:12.000Z" } ], "analyses": { "subjects": [ "11E72", "11G20", "14F20", "14H25" ], "keywords": [ "global field", "positive characteristic", "finite flat commutative group schemes", "similar arithmetic duality theorems", "understand local-global principles" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }