{ "id": "2001.09712", "version": "v1", "published": "2020-01-27T12:21:01.000Z", "updated": "2020-01-27T12:21:01.000Z", "title": "Genus-$3$ Lefschetz Fibrations and Exotic $4$-Manifolds with $b_{2}^{+}=3$", "authors": [ "Tulin Altunoz" ], "comment": "23 pages, 10 figures", "categories": [ "math.GT" ], "abstract": "We explicitly construct a genus-$3$ Lefschetz fibration over $\\mathbb{S}^{2}$ whose total space is $\\mathbb{T}^{2}\\times \\mathbb{S}^{2}\\# 6\\overline{\\mathbb{C} P^{2}}$ using the monodromy of Matsumoto's genus-$2$ Lefschetz fibration. We then construct more genus-$3$ Lefschetz fibrations whose total spaces are exotic minimal symplectic $4$-manifolds $3 \\mathbb{C} P^{2} \\# q\\overline{\\mathbb{C} P^{2}}$ for $q=13,\\ldots,19$. We also generalize our construction to get genus-$3k$ Lefschetz fibration structure on the $4$-manifold $\\Sigma_{k}\\times \\mathbb{S}^{2}\\# 6\\overline{\\mathbb{C} P^{2}}$ using the generalized Matsumoto's genus-$2k$ Lefschetz fibration. From this generalized version, we derive further exotic $4$-manifolds via Luttinger surgery and twisted fiber sum.", "revisions": [ { "version": "v1", "updated": "2020-01-27T12:21:01.000Z" } ], "analyses": { "subjects": [ "57R55", "57R17" ], "keywords": [ "total space", "lefschetz fibration structure", "exotic minimal symplectic", "luttinger surgery", "twisted fiber sum" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }