{ "id": "2001.09539", "version": "v1", "published": "2020-01-26T23:44:38.000Z", "updated": "2020-01-26T23:44:38.000Z", "title": "The G^0-periodic points of a linear system", "authors": [ "Victor Ayala", "Adriano Da Silva" ], "categories": [ "math.OC" ], "abstract": "In this paper we show that the compactness of the central subgroup $G^0$ associated with the drift of a linear system $\\Sigma_G$ on a connected Lie group $G$ is a necessary and sufficient condition for the boundedness of the $G^0$-periodic points of $\\Sigma_G$. As a consequence, the control set containing the identity element of $G$ is bounded if and only if $G^0$ is a compact subgroup.", "revisions": [ { "version": "v1", "updated": "2020-01-26T23:44:38.000Z" } ], "analyses": { "keywords": [ "linear system", "identity element", "control set", "periodic points", "central subgroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }