{ "id": "2001.09338", "version": "v1", "published": "2020-01-25T17:21:53.000Z", "updated": "2020-01-25T17:21:53.000Z", "title": "Left m-invertibility by the adjoint of Drazin inverse and m-selfadjointness of Hilbert space operators", "authors": [ "B. P. Duggal", "I. H. Kim" ], "comment": "14 pages", "categories": [ "math.FA" ], "abstract": "A Hilbert space operator $A\\in\\B$ is left $(X,m)$-invertible by $B\\in\\B$ (resp., $B\\in\\B$ is an $(X,m)$-adjoint of $A\\in\\B$) for some operator $X\\in\\B$ if $\\triangle_{B,A}^m(X)=\\sum_{j=0}^m(-1)^j\\left(\\begin{array}{clcr}m\\\\j\\end{array}\\right)B^{m-j}XA^{m-j}=0$ (resp., $\\delta_{B,A}^m(X)=\\sum_{j=0}^m(-1)^j\\left(\\begin{array}{clcr}m\\\\j\\end{array}\\right)B^{(m-j)}XA^j=0$). No Drazin invertible operator $A\\in\\B$, with Drazin inverse $A_d$, can be left $(I,m)$-invertible (equivalently, $m$-invertible) by its adjoint or its Drazin inverse or the adjoint of its Drazin inverse. For Drazin inverrtible operators $A$, it is seen that the existence of an $X$ acts as a conduit for implications $\\triangle_{B,A}(X)=0\\Longrightarrow \\delta^m_{C,A}(X)=0$, where the pair $(B,C)=$ either $(A,A_d)$ or $(A_d,A)$ or $(A^*,A^*_d)$ or $(A^*_d,A^*)$. Reverse implications fail. Assuming certain commutativity conditions, it is seen that $\\triangle_{A^*_d,A}^m(X)=0=\\triangle^n_{B^*_d,B}(Y)$ implies $\\delta^{m+n-1}_{A^*B^*,AB}(XY)=0=\\delta^{m+n-1}_{A^*+B^*,A+B}(XY)$.", "revisions": [ { "version": "v1", "updated": "2020-01-25T17:21:53.000Z" } ], "analyses": { "subjects": [ "47A05", "47A55", "47A11", "47B47" ], "keywords": [ "hilbert space operator", "drazin inverse", "left m-invertibility", "m-selfadjointness", "reverse implications fail" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }