{ "id": "2001.09243", "version": "v1", "published": "2020-01-25T01:10:31.000Z", "updated": "2020-01-25T01:10:31.000Z", "title": "A Barwise-Schlipf Theorem for Set Theory", "authors": [ "Ali Enayat" ], "comment": "14 pages", "categories": [ "math.LO" ], "abstract": "We characterize nonstandard models of ZF (Zermelo-Fraenkel) set theory (of arbitrary cardinality) that can be expanded to Goedel-Bernays class theory plus $\\Delta^1_1$-Comprehension. We also characterize countable nonstandard models of ZFC (ZF with the axiom of choice) that can be expanded to Goedel-Bernays class theory plus $\\Sigma^1_1$-Choice.", "revisions": [ { "version": "v1", "updated": "2020-01-25T01:10:31.000Z" } ], "analyses": { "subjects": [ "03C62", "03E30" ], "keywords": [ "set theory", "barwise-schlipf theorem", "goedel-bernays class theory plus", "arbitrary cardinality", "characterize nonstandard models" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }