{ "id": "2001.07275", "version": "v1", "published": "2020-01-20T22:56:22.000Z", "updated": "2020-01-20T22:56:22.000Z", "title": "A generalization of a result on the sum of element orders of a finite group", "authors": [ "Marius Tărnăuceanu" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group and let $\\psi(G)$ denote the sum of element orders of $G$. It is well-known that the maximum value of $\\varphi$ on the set of groups of order $n$, where $n$ is a positive integer, will occur at the cyclic group $C_n$. For nilpotent groups, we prove a natural generalization of this result, obtained by replacing the element orders of $G$ with the element orders relative to a certain subgroup $H$ of $G$.", "revisions": [ { "version": "v1", "updated": "2020-01-20T22:56:22.000Z" } ], "analyses": { "keywords": [ "finite group", "maximum value", "cyclic group", "nilpotent groups", "natural generalization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }