{ "id": "2001.05985", "version": "v1", "published": "2020-01-16T18:35:23.000Z", "updated": "2020-01-16T18:35:23.000Z", "title": "A System of Local/Nonlocal $p$-Laplacians: The Eigenvalue Problem and Its Asymptotic Limit as $p\\to1$", "authors": [ "S. Buccheri", "J. V. da Silva", "L. H. de Miranda" ], "categories": [ "math.AP" ], "abstract": "In this work, given $p\\in (1,\\infty)$, we prove the existence and simplicity of the first eigenvalue $\\lambda_p$ and its corresponding eigenvector $(u_p,v_p)$, for the following local/nonlocal PDE system \\begin{equation}\\label{Eq0} \\left\\{ \\begin{array}{rclcl} -\\Delta_p u + (-\\Delta)^r_p u & = & \\frac{2\\alpha}{\\alpha+\\beta}\\lambda |u|^{\\alpha-2}|v|^{\\beta}u & \\mbox{in} & \\Omega \\\\ -\\Delta_p v + (-\\Delta)^s_p v& = & \\frac{2\\beta}{\\alpha+\\beta}\\lambda |u|^{\\alpha}|v|^{\\beta-2}v & \\mbox{in} & \\Omega u& =& 0&\\text{ on } & \\mathbb{R}^N \\setminus \\Omega v& =& 0&\\text{ on } & \\mathbb{R}^N \\setminus \\Omega, \\end{array} \\right. \\end{equation} where $\\Omega$$\\subset$ $\\mathbb{R}^N$ is a bounded open domain, $0