{ "id": "2001.05932", "version": "v1", "published": "2020-01-16T16:49:34.000Z", "updated": "2020-01-16T16:49:34.000Z", "title": "Poincaré and Hardy inequalities on homogeneous trees", "authors": [ "Elvise Berchio", "Federico Santagati", "Maria Vallarino" ], "categories": [ "math.AP", "math.FA" ], "abstract": "We study Hardy-type inequalities on infinite homogeneous trees. More precisely, we derive optimal Hardy weights for the combinatorial Laplacian in this setting and we obtain, as a consequence, optimal improvements for the Poincar\\'e inequality.", "revisions": [ { "version": "v1", "updated": "2020-01-16T16:49:34.000Z" } ], "analyses": { "subjects": [ "26D10", "39A12", "05C05" ], "keywords": [ "hardy inequalities", "derive optimal hardy weights", "study hardy-type inequalities", "infinite homogeneous trees", "combinatorial laplacian" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }