{ "id": "2001.04635", "version": "v1", "published": "2020-01-14T06:01:16.000Z", "updated": "2020-01-14T06:01:16.000Z", "title": "On the sum of squares of middle-third Cantor set", "authors": [ "Zhiqiang Wang", "Kan Jiang", "Wenxia Li", "Bing Zhao" ], "categories": [ "math.DS", "math.NT" ], "abstract": "Let $C$ be the middle-third Cantor set. In this paper, we show that for every $x\\in [0,4]$, there exist $x_1, x_2, x_3, x_4 \\in C$ such that $$x= x_1^2+x_2^2+x_3^2+x_4^2,$$ which answers a question posed by Athreya, Reznick,and Tyson.", "revisions": [ { "version": "v1", "updated": "2020-01-14T06:01:16.000Z" } ], "analyses": { "keywords": [ "middle-third cantor set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }