{ "id": "2001.03818", "version": "v1", "published": "2020-01-12T01:25:35.000Z", "updated": "2020-01-12T01:25:35.000Z", "title": "Serre-Lusztig relations for $\\imath${}quantum groups", "authors": [ "Xinhong Chen", "Ming Lu", "Weiqiang Wang" ], "comment": "44 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "Let $(\\bf U, \\bf U^\\imath)$ be a quantum symmetric pair of Kac-Moody type. The $\\imath$quantum groups $\\bf U^\\imath$ and the universal $\\imath$quantum groups $\\widetilde{\\bf U}^\\imath$ can be viewed as a generalization of quantum groups and Drinfeld doubles $\\widetilde{\\bf U}$. In this paper we formulate and establish Serre-Lusztig relations for $\\imath$quantum groups in terms of $\\imath$divided powers, which are an $\\imath$-analog of Lusztig's higher order Serre relations for quantum groups. This has applications to braid group symmetries on $\\imath$quantum groups.", "revisions": [ { "version": "v1", "updated": "2020-01-12T01:25:35.000Z" } ], "analyses": { "keywords": [ "quantum groups", "lusztigs higher order serre relations", "quantum symmetric pair", "braid group symmetries", "drinfeld doubles" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }