{ "id": "2001.03718", "version": "v1", "published": "2020-01-11T06:38:20.000Z", "updated": "2020-01-11T06:38:20.000Z", "title": "Fluctuations for matrix-valued Gaussian processes", "authors": [ "Mario Diaz", "Arturo Jaramillo", "Juan Carlos Pardo" ], "categories": [ "math.PR" ], "abstract": "We consider a symmetric matrix-valued Gaussian process $Y^{(n)}=(Y^{(n)}(t);t\\ge0)$ and its empirical spectral measure process $\\mu^{(n)}=(\\mu_{t}^{(n)};t\\ge0)$. Under some mild conditions on the covariance function of $Y^{(n)}$, we find an explicit expression for the limit distribution of $$Z_F^{(n)} := \\left( \\big(Z_{f_1}^{(n)}(t),\\ldots,Z_{f_r}^{(n)}(t)\\big) ; t\\ge0\\right),$$ where $F=(f_1,\\dots, f_r)$, for $r\\ge 1$, with each component belonging to a large class of test functions, and $$ Z_{f}^{(n)}(t) := n\\int_{\\mathbb{R}}f(x)\\mu_{t}^{(n)}(\\text{d} x)-n\\mathbb{E}\\left[\\int_{\\mathbb{R}}f(x)\\mu_{t}^{(n)}(\\text{d} x)\\right].$$ More precisely, we establish the stable convergence of $Z_F^{(n)}$ and determine its limiting distribution. An upper bound for the total variation distance of the law of $Z_{f}^{(n)}(t)$ to its limiting distribution, for a test function $f$ and $t\\geq0$ fixed, is also given.", "revisions": [ { "version": "v1", "updated": "2020-01-11T06:38:20.000Z" } ], "analyses": { "subjects": [ "60G15", "60B20", "60F05", "60H07", "60H05" ], "keywords": [ "fluctuations", "test function", "symmetric matrix-valued gaussian process", "total variation distance", "limiting distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }