{ "id": "2001.03474", "version": "v1", "published": "2020-01-10T14:36:36.000Z", "updated": "2020-01-10T14:36:36.000Z", "title": "Ladders of recollements of abelian categories", "authors": [ "Nan Gao", "Steffen Koenig", "Chrysostomos Psaroudakis" ], "comment": "27 pages, comments are welcome", "categories": [ "math.RT", "math.CT", "math.RA" ], "abstract": "Ladders of recollements of abelian categories are introduced, and used to address three general problems. Ladders of a certain height allow to construct recollements of triangulated categories, involving derived categories and singularity categories, from abelian ones. Ladders also allow to tilt abelian recollements, and ladders guarantee that properties like Gorenstein projective or injective are preserved by some functors in abelian recollements. Breaking symmetry is crucial in developing this theory.", "revisions": [ { "version": "v1", "updated": "2020-01-10T14:36:36.000Z" } ], "analyses": { "keywords": [ "abelian categories", "tilt abelian recollements", "construct recollements", "general problems", "singularity categories" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }