{ "id": "2001.02528", "version": "v1", "published": "2020-01-08T13:57:57.000Z", "updated": "2020-01-08T13:57:57.000Z", "title": "A Liouville theorem for Lévy generators", "authors": [ "Franziska Kühn" ], "categories": [ "math.PR", "math.AP" ], "abstract": "Under mild assumptions, we establish a Liouville theorem for the \"Laplace\" equation $Au=0$ associated with the infinitesimal generator $A$ of a L\\'evy process: If $u$ is a weak solution to $Au=0$ which is at most of (suitable) polynomial growth, then $u$ is a polynomial. As a by-product, we obtain new regularity estimates for semigroups associated with L\\'evy processes.", "revisions": [ { "version": "v1", "updated": "2020-01-08T13:57:57.000Z" } ], "analyses": { "subjects": [ "60G51", "35B53", "31C05", "35R09", "60J35" ], "keywords": [ "liouville theorem", "lévy generators", "levy process", "polynomial growth", "weak solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }