{ "id": "2001.02226", "version": "v1", "published": "2020-01-07T18:56:36.000Z", "updated": "2020-01-07T18:56:36.000Z", "title": "Trace theory for Sobolev mappings into a manifold", "authors": [ "Petru Mironescu", "Jean Van Schaftingen" ], "comment": "15 pages", "categories": [ "math.AP", "math.DG", "math.FA" ], "abstract": "We review the current state of the art concerning the characterization of traces of the spaces $W^{1, p} (\\mathbb{B}^{m-1}\\times (0,1), \\mathcal{N})$ of Sobolev mappings with values into a compact manifold $\\mathcal{N}$. In particular, we exhibit a new analytical obstruction to the extension, which occurs when $p < m$ is an integer and the homotopy group $\\pi_p (\\mathcal{N})$ is non trivial. On the positive side, we prove the surjectivity of the trace operator when the fundamental group $\\pi_1 (\\mathcal{N})$ is finite and $\\pi_2 (\\mathcal{N}) \\simeq \\dotsb \\simeq \\pi_{\\lfloor p - 1 \\rfloor} (\\mathcal{N}) \\simeq \\{0\\}$. We present several open problems connected to the extension problem.", "revisions": [ { "version": "v1", "updated": "2020-01-07T18:56:36.000Z" } ], "analyses": { "subjects": [ "46T10", "46E35", "58D15" ], "keywords": [ "sobolev mappings", "trace theory", "extension problem", "open problems", "current state" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }