{ "id": "2001.02196", "version": "v1", "published": "2020-01-07T17:47:23.000Z", "updated": "2020-01-07T17:47:23.000Z", "title": "Uniqueness for a system of Monge-Ampère equations", "authors": [ "Nam Q. Le" ], "categories": [ "math.AP" ], "abstract": "In this note, we prove a uniqueness result, up to a positive multiplicative constant, for nontrivial convex solutions to a system of Monge-Amp\\`ere equations \\begin{equation*} \\left\\{ \\begin{alignedat}{2} \\det D^2 u~& = \\gamma |v|^p~&&\\text{in} ~ \\Omega, \\\\\\ \\det D^2 v~& = \\mu |u|^{n^2/p}~&&\\text{in} ~ \\Omega, \\\\\\ u=v &= 0~&&\\text{on}~ \\partial\\Omega \\end{alignedat} \\right. \\end{equation*} on bounded, smooth and uniformly convex domains $\\Omega\\subset R^n$ provided that $p$ is close to $n\\geq 2$. When $p=n$, we show that the uniqueness holds for general bounded convex domains $\\Omega\\subset R^n$.", "revisions": [ { "version": "v1", "updated": "2020-01-07T17:47:23.000Z" } ], "analyses": { "keywords": [ "monge-ampère equations", "general bounded convex domains", "nontrivial convex solutions", "uniformly convex domains", "uniqueness result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }