{ "id": "2001.01910", "version": "v1", "published": "2020-01-07T06:43:33.000Z", "updated": "2020-01-07T06:43:33.000Z", "title": "On Cross-intersecting Sperner Families", "authors": [ "W. H. W. Wong", "E. G. Tay" ], "comment": "17 pages", "categories": [ "math.CO" ], "abstract": "Two sets $\\mathscr{A}$ and $\\mathscr{B}$ are said to be cross-intersecting if $X\\cap Y\\neq\\emptyset$ for all $X\\in\\mathscr{A}$ and $Y\\in\\mathscr{B}$. Given two cross-intersecting Sperner families (or antichains) $\\mathscr{A}$ and $\\mathscr{B}$ of $\\mathbb{N}_n$, we prove that $|\\mathscr{A}|+|\\mathscr{B}|\\le 2{{n}\\choose{\\lceil{n/2}\\rceil}}$ if $n$ is odd, and $|\\mathscr{A}|+|\\mathscr{B}|\\le {{n}\\choose{n/2}}+{{n}\\choose{(n/2)+1}}$ if $n$ is even. Furthermore, all extremal and almost-extremal families for $\\mathscr{A}$ and $\\mathscr{B}$ are determined.", "revisions": [ { "version": "v1", "updated": "2020-01-07T06:43:33.000Z" } ], "analyses": { "subjects": [ "05D05", "F.2.2" ], "keywords": [ "cross-intersecting sperner families", "almost-extremal families", "antichains" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }