{ "id": "2001.01254", "version": "v1", "published": "2020-01-05T15:16:24.000Z", "updated": "2020-01-05T15:16:24.000Z", "title": "Representation of n-abelian categories in abelian categories", "authors": [ "Ramin Ebrahimi", "Alireza Nasr-Isfahani" ], "categories": [ "math.RT", "math.CT" ], "abstract": "Let $\\mathcal{M}$ be a small $n$-abelian category. We show that the category of absolutely pure group valued functors over $\\mathcal{M}$, denote by $\\mathcal{L}_2(\\mathcal{M},\\mathcal{G})$, is an abelian category and $\\mathcal{M}$ is equivalent to a full subcategory of $\\mathcal{L}_2(\\mathcal{M},\\mathcal{G})$ in such a way that $n$-kernels and $n$-cokernels are precisely exact sequences of $\\mathcal{L}_2(\\mathcal{M},\\mathcal{G})$ with terms in $\\mathcal{M}$. This gives a higher-dimensional version of the Freyd-Mitchell embedding theorem for $n$-abelian categories.", "revisions": [ { "version": "v1", "updated": "2020-01-05T15:16:24.000Z" } ], "analyses": { "subjects": [ "18E10", "18E20", "18E99" ], "keywords": [ "abelian category", "n-abelian categories", "representation", "absolutely pure group valued functors", "freyd-mitchell embedding theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }