{ "id": "2001.01078", "version": "v1", "published": "2020-01-04T13:31:49.000Z", "updated": "2020-01-04T13:31:49.000Z", "title": "On the Hardness of Almost All Subset Sum Problems by Ordinary Branch-and-Bound", "authors": [ "Mustafa Kemal Tural" ], "comment": "5 pages", "journal": "Proceeding of the \"Uluslararasi Bilim, Teknoloji ve Sosyal Bilimlerde Guncel Gelismeler Sempozyumu\", 20-22 December 2019, Ankara, Turkey", "categories": [ "math.OC", "cs.DM" ], "abstract": "Given $n$ positive integers $a_1,a_2,\\dots,a_n$, and a positive integer right hand side $\\beta$, we consider the feasibility version of the subset sum problem which is the problem of determining whether a subset of $a_1,a_2,\\dots,a_n$ adds up to $\\beta$. We show that if the right hand side $\\beta$ is chosen as $\\lfloor r\\sum_{j=1}^n a_j \\rfloor$ for a constant $0 < r < 1$ and if the $a_j$'s are independentand identically distributed from a discrete uniform distribution taking values ${1,2,\\dots,\\lfloor 10^{n/2} \\rfloor }$, then the probability that the instance of the subset sum problem generated requires the creation of an exponential number of branch-and-bound nodes when one branches on the individual variables in any order goes to $1$ as $n$ goes to infinity.", "revisions": [ { "version": "v1", "updated": "2020-01-04T13:31:49.000Z" } ], "analyses": { "subjects": [ "G.2.1", "F.2.0", "G.2.1", "F.2.0" ], "keywords": [ "subset sum problem", "ordinary branch-and-bound", "positive integer right hand side", "discrete uniform distribution", "individual variables" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }