{ "id": "2001.00374", "version": "v1", "published": "2020-01-02T10:00:51.000Z", "updated": "2020-01-02T10:00:51.000Z", "title": "Uniform approximations by Fourier sums on classes of convolutions of periodic functions", "authors": [ "A. S. Serdyuk", "T. A. Stepanyuk" ], "categories": [ "math.CA" ], "abstract": "We establish asymptotic estimates for exact upper bounds of uniform approximations by Fourier sums on the classes of $2\\pi$-periodic functions, which are represented by convolutions of functions $\\varphi (\\varphi\\bot 1)$ from unit ball of the space $L_{1}$ with fixed kernels $\\Psi_{\\beta}$ of the form $\\Psi_{\\beta}(t)=\\sum\\limits_{k=1}^{\\infty}\\psi(k) \\cos\\left(kt-\\frac{\\beta\\pi}{2}\\right)$, $\\sum\\limits_{k=1}^{\\infty}k\\psi(k)<\\infty$, $\\psi(k)\\geq 0$, $\\beta\\in\\mathbb{R}$.", "revisions": [ { "version": "v1", "updated": "2020-01-02T10:00:51.000Z" } ], "analyses": { "keywords": [ "fourier sums", "periodic functions", "uniform approximations", "convolutions", "exact upper bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }