{ "id": "2001.00185", "version": "v1", "published": "2020-01-01T10:37:52.000Z", "updated": "2020-01-01T10:37:52.000Z", "title": "A new upper bound for spherical codes", "authors": [ "Naser T. Sardari", "Masoud Zargar" ], "comment": "Comments are welcome!", "categories": [ "math.MG", "cs.IT", "math.IT", "math.NT" ], "abstract": "We introduce a new linear programming method for bounding the maximum number $M(n,\\theta)$ of points on a sphere in $n$-dimensional Euclidean space at an angular distance of not less than $\\theta$ from one another. We give the unique optimal solution to this linear programming problem and improve the best known upper bound of Kabatyanskii and Levenshtein. By well-known methods, this leads to new upper bounds for $\\delta_n$, the maximum packing density of an $n$-dimensional Euclidean space by equal balls.", "revisions": [ { "version": "v1", "updated": "2020-01-01T10:37:52.000Z" } ], "analyses": { "keywords": [ "upper bound", "spherical codes", "dimensional euclidean space", "unique optimal solution", "maximum number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }