{ "id": "1912.12930", "version": "v1", "published": "2019-12-30T13:59:37.000Z", "updated": "2019-12-30T13:59:37.000Z", "title": "Representations of finite number of quadratic forms with same rank", "authors": [ "Daejun Kim", "Byeong-Kweon Oh" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "Let $m, n$ be positive integers with $m\\le n$. Let $\\kappa(m,n)$ be the largest integer $k$ such that for any (positive definite and integral) quadratic forms $f_1,\\ldots,f_k$ of rank $m$, there exists a quadratic form of rank $n$ that represents $f_i$ for any $i$ with $1\\le i \\le k$. In this article, we determine the number $\\kappa(m,n)$ for any integer $m$ with $1\\le m\\le 8$, except for the cases when $(m,n)=(3,5)$ and $(4,6)$. In the exceptional cases, it will be proved that $1\\le \\kappa(3,5), \\ \\kappa(4,6)\\le 2$. We also discuss some related topics.", "revisions": [ { "version": "v1", "updated": "2019-12-30T13:59:37.000Z" } ], "analyses": { "keywords": [ "quadratic form", "finite number", "representations", "largest integer", "exceptional cases" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }