{ "id": "1912.12435", "version": "v1", "published": "2019-12-28T10:26:19.000Z", "updated": "2019-12-28T10:26:19.000Z", "title": "A choice-free cardinal equality", "authors": [ "Guozhen Shen" ], "comment": "12 pages", "categories": [ "math.LO" ], "abstract": "For a cardinal $\\mathfrak{a}$, let $\\mathrm{fin}(\\mathfrak{a})$ be the cardinality of the set of all finite subsets of a set which is of cardinality $\\mathfrak{a}$. It is proved without the aid of the axiom of choice that for all infinite cardinals $\\mathfrak{a}$ and all natural numbers $n$, \\[ 2^{\\mathrm{fin}(\\mathfrak{a})^n}=2^{[\\mathrm{fin}(\\mathfrak{a})]^n}. \\] On the other hand, it is proved that the following statement is consistent with $\\mathsf{ZF}$: there exists an infinite cardinal $\\mathfrak{a}$ such that \\[ 2^{\\mathrm{fin}(\\mathfrak{a})}<2^{\\mathrm{fin}(\\mathfrak{a})^2}<2^{\\mathrm{fin}(\\mathfrak{a})^3}<\\dots<2^{\\mathrm{fin}(\\mathrm{fin}(\\mathfrak{a}))}. \\]", "revisions": [ { "version": "v1", "updated": "2019-12-28T10:26:19.000Z" } ], "analyses": { "subjects": [ "03E10", "03E25" ], "keywords": [ "choice-free cardinal equality", "infinite cardinal", "finite subsets", "natural numbers", "cardinality" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }