{ "id": "1912.12205", "version": "v1", "published": "2019-12-24T10:00:03.000Z", "updated": "2019-12-24T10:00:03.000Z", "title": "Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight", "authors": [ "Alberto Boscaggin", "Guglielmo Feltrin" ], "comment": "17 pages, 4 PDF figures", "categories": [ "math.AP", "math.CA" ], "abstract": "We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem \\begin{equation*} \\begin{cases} \\, \\mathrm{div}\\,\\Biggl{(} \\dfrac{\\nabla u}{\\sqrt{1- | \\nabla u |^{2}}}\\Biggr{)} + \\lambda a(|x|)u^p = 0, & \\text{in $B$,} \\\\ \\, \\partial_{\\nu}u=0, & \\text{on $\\partial B$,} \\end{cases} \\end{equation*} where $B$ is a ball centered at the origin, $a(|x|)$ is a radial sign-changing function with $\\int_B a(|x|)\\,\\mathrm{d}x < 0$, $p>1$ and $\\lambda > 0$ is a large parameter. The proof is based on the Leray-Schauder degree theory and extends to a larger class of nonlinearities.", "revisions": [ { "version": "v1", "updated": "2019-12-24T10:00:03.000Z" } ], "analyses": { "subjects": [ "34B08", "34B18", "35B09", "47H11" ], "keywords": [ "positive radial solutions", "minkowski-curvature neumann problem", "indefinite weight", "neumann boundary value problem", "leray-schauder degree theory" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }