{ "id": "1912.12051", "version": "v1", "published": "2019-12-27T10:38:47.000Z", "updated": "2019-12-27T10:38:47.000Z", "title": "Exponential concentration for the number of roots of random trigonometric polynomials", "authors": [ "Hoi H. Nguyen", "Ofer Zeitouni" ], "comment": "17 pages", "categories": [ "math.PR" ], "abstract": "We show that the number of real roots of random trigonometric polynomials with i.i.d. coefficients, which are either bounded or satisfy the logarithmic Sobolev inequality, satisfies an exponential concentration of measure.", "revisions": [ { "version": "v1", "updated": "2019-12-27T10:38:47.000Z" } ], "analyses": { "keywords": [ "random trigonometric polynomials", "exponential concentration", "logarithmic sobolev inequality", "real roots", "coefficients" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }