{ "id": "1912.11992", "version": "v1", "published": "2019-12-27T05:16:45.000Z", "updated": "2019-12-27T05:16:45.000Z", "title": "Korteweg--de Vries limit for the Fermi--Pasta--Ulam system", "authors": [ "Younghun Hong", "Chulkwang Kwak", "Changhun Yang" ], "comment": "48page", "categories": [ "math.AP" ], "abstract": "In this paper, we develop dispersive PDE techniques for the Fermi--Pasta--Ulam (FPU) system with infinitely many oscillators, and we show that general solutions to the infinite FPU system can be approximated by counter-propagating waves governed by the Korteweg--de Vries (KdV) equation as the lattice spacing approaches zero. Our result not only simplifies the hypotheses but also reduces the regularity requirement in the previous study [45].", "revisions": [ { "version": "v1", "updated": "2019-12-27T05:16:45.000Z" } ], "analyses": { "subjects": [ "37L60", "35Q53" ], "keywords": [ "korteweg-de vries limit", "fermi-pasta-ulam system", "lattice spacing approaches zero", "infinite fpu system", "dispersive pde techniques" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }