{ "id": "1912.11958", "version": "v1", "published": "2019-12-27T01:51:50.000Z", "updated": "2019-12-27T01:51:50.000Z", "title": "Boundary Lipschitz Regularity and the Hopf Lemma on Reifenberg Domains for Fully Nonlinear Elliptic Equations", "authors": [ "Yuanyuan Lian", "Wenxiu Xu", "Kai Zhang" ], "categories": [ "math.AP" ], "abstract": "In this paper, we prove the boundary Lipschitz regularity and the Hopf Lemma by a unified method on Reifenberg domains for fully nonlinear elliptic equations. Precisely, if the domain $\\Omega$ satisfies the exterior Reifenberg $C^{1,\\mathrm{Dini}}$ condition at $x_0\\in \\partial \\Omega$ (see Definition 1.3), the solution is Lipschitz continuous at $x_0$; if $\\Omega$ satisfies the interior Reifenberg $C^{1,\\mathrm{Dini}}$ condition at $x_0$ (see Definition 1.4), the Hopf lemma holds at $x_0$. Our paper extends the results under the usual $C^{1,\\mathrm{Dini}}$ condition.", "revisions": [ { "version": "v1", "updated": "2019-12-27T01:51:50.000Z" } ], "analyses": { "subjects": [ "35B65", "35J25", "35J60", "35D40" ], "keywords": [ "fully nonlinear elliptic equations", "boundary lipschitz regularity", "reifenberg domains", "hopf lemma holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }