{ "id": "1912.11459", "version": "v1", "published": "2019-12-24T18:26:44.000Z", "updated": "2019-12-24T18:26:44.000Z", "title": "On the nonlinear Dirac equation on noncompact metric graphs", "authors": [ "William Borrelli", "Raffaele Carlone", "Lorenzo Tentarelli" ], "comment": "29 pages, 4 figures. Keywords: nonlinear Dirac equation, metric graphs, local well-posedness, bound states, implicit function theorem, bifurcation, perturbation method, nonrelativistic limit", "categories": [ "math.AP", "math-ph", "math.FA", "math.MP" ], "abstract": "The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., $\\psi^{p-2}\\psi$) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite $N$-star graphs, the existence of standing waves bifurcating from the trivial solution at $\\omega=mc^2$, for any $p>2$. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.", "revisions": [ { "version": "v1", "updated": "2019-12-24T18:26:44.000Z" } ], "analyses": { "subjects": [ "35R02", "35Q41", "81Q35", "47J07", "58E07", "47A10" ], "keywords": [ "nonlinear dirac equation", "noncompact metric graphs", "kirchhoff-type vertex conditions", "paper discusses", "trivial solution" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }