{ "id": "1912.11261", "version": "v1", "published": "2019-12-24T09:37:55.000Z", "updated": "2019-12-24T09:37:55.000Z", "title": "Symmetric power functoriality for holomorphic modular forms", "authors": [ "James Newton", "Jack A. Thorne" ], "categories": [ "math.NT" ], "abstract": "Let $f$ be a cuspidal Hecke eigenform of level 1. We prove the automorphy of the symmetric power lifting $\\mathrm{Sym}^n f$ for every $n \\geq 1$. We establish the same result for a more general class of cuspidal Hecke eigenforms, including all those associated to semistable elliptic curves over $\\mathbb{Q}$.", "revisions": [ { "version": "v1", "updated": "2019-12-24T09:37:55.000Z" } ], "analyses": { "keywords": [ "holomorphic modular forms", "symmetric power functoriality", "cuspidal hecke eigenform", "semistable elliptic curves", "general class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }