{ "id": "1912.11257", "version": "v1", "published": "2019-12-24T09:20:48.000Z", "updated": "2019-12-24T09:20:48.000Z", "title": "$L^2$-bounded singular integrals on a purely unrectifiable set in $\\mathbb{R}^d$", "authors": [ "Joan Mateu", "Laura Prat" ], "categories": [ "math.CA" ], "abstract": "We construct an example of a purely unrectifiable measure $\\mu$ in $\\mathbb{R}^d$ for which the singular integrals associated to the kernels $\\displaystyle{K(x)=\\frac{P_{2k+1}(x)}{|x|^{2k+d}}}$, with $k\\geq 1$ and $P_{2k+1}$ a homogeneous harmonic polynomial of degree $2k+1$, are bounded in $L^2(\\mu)$. This contrasts starkly with the results concerning the Riesz kernel $\\displaystyle{\\frac{x}{|x|^{d}}}$ in $\\mathbb{R}^d$.", "revisions": [ { "version": "v1", "updated": "2019-12-24T09:20:48.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "bounded singular integrals", "purely unrectifiable set", "riesz kernel", "homogeneous harmonic polynomial", "purely unrectifiable measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }