{ "id": "1912.11219", "version": "v1", "published": "2019-12-24T06:08:46.000Z", "updated": "2019-12-24T06:08:46.000Z", "title": "Anti-uniformity norms, anti-uniformity functions and their algebras on Euclidean spaces", "authors": [ "A. Martina Neuman" ], "categories": [ "math.CA" ], "abstract": "Let $k\\geq 2$ be an integer. Given a uniform function $f$ - one that satisfies $\\|f\\|_{U(k)}<\\infty$, there is an associated anti-uniform function $g$ - one that satisfied $\\|g\\|_{U(k)}^{*}$. The question is, can one approximate $g$ with the Gowers-Host-Kra dual function $D_{k}f$ of $f$? Moreover, given the generalized cubic convolution products $D_{k}(f_{\\alpha}:\\alpha\\in\\tilde{V}_{k})$, what sorts of algebras can they form? In short, this paper explores possible structures of anti-uniformity on Euclidean spaces.", "revisions": [ { "version": "v1", "updated": "2019-12-24T06:08:46.000Z" } ], "analyses": { "keywords": [ "euclidean spaces", "anti-uniformity norms", "anti-uniformity functions", "gowers-host-kra dual function", "generalized cubic convolution products" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }