{ "id": "1912.10544", "version": "v1", "published": "2019-12-22T21:28:11.000Z", "updated": "2019-12-22T21:28:11.000Z", "title": "Classifying spaces of infinity-sheaves", "authors": [ "Daniel Berwick-Evans", "Pedro Boavida de Brito", "Dmitri Pavlov" ], "comment": "31 pages. Comments are very welcome", "categories": [ "math.AT", "math.CT", "math.KT" ], "abstract": "We prove that the set of concordance classes of sections of an infinity-sheaf on a manifold is representable, extending a theorem of Madsen and Weiss. This is reminiscent of an h-principle in which the role of isotopy is played by concordance. As an application, we offer an answer to the question: what does the classifying space of a Segal space classify?", "revisions": [ { "version": "v1", "updated": "2019-12-22T21:28:11.000Z" } ], "analyses": { "subjects": [ "55N30", "57R19", "55N20", "18G60", "22A22", "18F10", "18F20", "14D23", "14A20", "58D27", "58D29", "14D22", "55R35", "55U35", "18G55", "14F42", "55R65" ], "keywords": [ "classifying space", "infinity-sheaf", "concordance classes", "reminiscent", "h-principle" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }