{ "id": "1912.09772", "version": "v1", "published": "2019-12-20T11:34:26.000Z", "updated": "2019-12-20T11:34:26.000Z", "title": "Analytic Twists of $\\rm GL_3\\times \\rm GL_2$ Automorphic Forms", "authors": [ "Yongxiao Lin", "Qingfeng Sun" ], "comment": "35 pages; comments welcome!", "categories": [ "math.NT" ], "abstract": "Let $\\pi$ be a Hecke--Maass cusp form for $\\rm SL_3(\\mathbb{Z})$ with normalized Hecke eigenvalues $\\lambda_{\\pi}(n,r)$ and let $f$ be a holomorphic or Maass cusp form for $\\rm SL_2(\\mathbb{Z})$ with normalized Hecke eigenvalues $\\lambda_f(n)$. In this paper, we are concerned with obtaining nontrivial estimates for the sum $$ \\sum_{r,n\\geq 1}\\lambda_{\\pi}(n,r)\\lambda_f(n)e\\left(t\\varphi(r^2n/N)\\right)V\\left(r^2n/N\\right), $$ where $e(x)=e^{2\\pi ix}$, $V(x)\\in \\mathcal{C}_c^{\\infty}(0,\\infty)$, $t\\geq 1$ is a large parameter and $\\varphi(x)$ is some nonlinear real-valued smooth function. As applications, we give an improved subconvexity bound for $\\rm GL_3\\times \\rm GL_2$ $L$-functions in the $t$-aspect, and under the Ramanujan conjecture we derive the following bound for sums of $\\rm GL_3\\times \\rm GL_2$ Fourier coefficients $$ \\sum_{r^2n\\leq x}\\lambda_{\\pi}(r,n)\\lambda_f(n)\\ll x^{5/7-1/364+\\varepsilon} $$ for any $\\varepsilon>0$, which breaks for the first time the barrier $O(x^{5/7+\\varepsilon})$ in a work of Friedlander--Iwaniec.", "revisions": [ { "version": "v1", "updated": "2019-12-20T11:34:26.000Z" } ], "analyses": { "subjects": [ "11F30", "11L07", "11F66", "11M41" ], "keywords": [ "automorphic forms", "analytic twists", "normalized hecke eigenvalues", "hecke-maass cusp form", "nonlinear real-valued smooth function" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }