{ "id": "1912.09281", "version": "v1", "published": "2019-12-17T19:24:15.000Z", "updated": "2019-12-17T19:24:15.000Z", "title": "A Serre presentation for the $\\imath$quantum covering groups", "authors": [ "Christopher Chung" ], "comment": "28 pages including references. arXiv admin note: text overlap with arXiv:1810.12475 by other authors", "categories": [ "math.RT" ], "abstract": "Let $(\\mathbf{U}, \\mathbf{U}^\\imath)$ be a quasi-split quantum symmetric pair of Kac-Moody type. The $\\imath$quantum group $\\mathbf{U}^\\imath$ admits a Serre presentation featuring the $\\imath$-Serre relations in terms of $\\imath$-divided powers. Generalizing this result, we give a Serre presentation $ \\mathbf{U}^\\imath_\\pi $ of quantum symmetric pairs $ (\\mathbf{U}_\\pi, \\mathbf{U}^\\imath_\\pi) $ for quantum covering algebras $\\mathbf{U}_\\pi$, which have an additional parameter $ \\pi $ that specializes to the Lusztig quantum group when $ \\pi = 1 $ and quantum supergroups of anisotropic type when $ \\pi = -1 $. We give a Serre presentation for $ \\mathbf{U}^\\imath_\\pi $, introducing the $\\imath^\\pi$-Serre relations and $\\imath^\\pi$-divided powers.", "revisions": [ { "version": "v1", "updated": "2019-12-17T19:24:15.000Z" } ], "analyses": { "keywords": [ "serre presentation", "quantum covering groups", "serre relations", "quasi-split quantum symmetric pair", "lusztig quantum group" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }