{ "id": "1912.09108", "version": "v1", "published": "2019-12-19T10:28:25.000Z", "updated": "2019-12-19T10:28:25.000Z", "title": "Lyapunov-type Conditions for Non-strong Ergodicity of Markov Processes", "authors": [ "Yong-Hua Mao", "Tao Wang" ], "comment": "15 pages", "categories": [ "math.PR" ], "abstract": "We present Lyapunov-type conditions for non-strong ergodicity of Markov processes. Some concrete models are discussed including diffusion processes on Riemannian manifolds and Ornstein-Uhlenbeck processes driven by symmetric $\\alpha$-stable processes. For SDE driven by $\\alpha$-stable process ($\\alpha\\in (0,2]$) with polynomial drift, the strong ergodicity or not is independent on $\\alpha$.", "revisions": [ { "version": "v1", "updated": "2019-12-19T10:28:25.000Z" } ], "analyses": { "keywords": [ "lyapunov-type conditions", "non-strong ergodicity", "markov processes", "ornstein-uhlenbeck processes driven", "stable process" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }