{ "id": "1912.08944", "version": "v1", "published": "2019-12-18T23:32:51.000Z", "updated": "2019-12-18T23:32:51.000Z", "title": "On the Hollenbeck-Verbitsky conjecture and M. Riesz theorem for various function spaces", "authors": [ "Marijan Marković", "Petar Melentijević" ], "comment": "22 pages", "categories": [ "math.FA", "math.CV" ], "abstract": "Let $P_+$ be the Riesz's projection operator and let $P_-= I - P_+$. We consider two-sided estimates of $\\| ( |P_ + f | ^s + |P_- f |^s) ^{\\frac {1}{s}}\\|_{L^p (\\mathbf{T})}$ in terms of Lebesgue $p$-norm of the function $f \\in L^p(\\mathbf{T})$. For some values of parameters $0