{ "id": "1912.08154", "version": "v1", "published": "2019-12-17T17:44:19.000Z", "updated": "2019-12-17T17:44:19.000Z", "title": "$\\mathrm{SL}_2(\\mathbb{R})$-dynamics on the moduli space of one-holed tori", "authors": [ "Adrien Boulanger", "Selim Ghazouani" ], "comment": "22 pages", "categories": [ "math.DS", "math.GT" ], "abstract": "We study the $\\mathrm{SL}_2(\\mathbb{R})$-action on the moduli space of (triangulable) dilation tori with one boundary component. We prove that every orbit is either closed or dense, and that every orbit of the Teichmuller flow escapes to infinity.", "revisions": [ { "version": "v1", "updated": "2019-12-17T17:44:19.000Z" } ], "analyses": { "keywords": [ "moduli space", "one-holed tori", "teichmuller flow escapes", "boundary component", "dilation tori" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }