{ "id": "1912.08070", "version": "v1", "published": "2019-12-15T14:55:27.000Z", "updated": "2019-12-15T14:55:27.000Z", "title": "Proof of a supercongruence conjectured by Sun through a $q$-microscope", "authors": [ "Victor J. W. Guo" ], "comment": "6 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Recently, Z.-W. Sun made the following conjecture: for any odd prime $p$ and odd integer $m$, $$ \\frac{1}{m^2{m-1\\choose (m-1)/2}}\\Bigg(\\sum_{k=0}^{(pm-1)/2}\\frac{{2k\\choose k}}{8^k} -\\left(\\frac{2}{p}\\right)\\sum_{k=0}^{(m-1)/2}\\frac{{2k\\choose k}}{8^k}\\Bigg) \\equiv 0\\pmod{p^2}. $$ In this note, applying the \"creative microscoping\" method, introduced by the author and Zudilin, we confirm the above conjecture of Sun.", "revisions": [ { "version": "v1", "updated": "2019-12-15T14:55:27.000Z" } ], "analyses": { "subjects": [ "33D15", "11A07", "11B65" ], "keywords": [ "microscope", "supercongruence", "conjecture" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }