{ "id": "1912.07864", "version": "v1", "published": "2019-12-17T08:19:36.000Z", "updated": "2019-12-17T08:19:36.000Z", "title": "Gradient estimates for the constant mean curvature equation in hyperbolic space", "authors": [ "Rafael López" ], "journal": "Proceedings of the Royal Society of Edinburgh - Section A: Mathematics, 2020", "categories": [ "math.DG" ], "abstract": "We establish gradient estimates for solutions to the Dirichlet problem for the constant mean curvature equation in hyperbolic space. We obtain these estimates on bounded strictly convex domains by using the maximum principles theory of $\\Phi$-functions of Payne and Philippin. These estimates are then employed to solve the Dirichlet problem when the mean curvature $H$ satisfies $H<1$ under suitable boundary conditions.", "revisions": [ { "version": "v1", "updated": "2019-12-17T08:19:36.000Z" } ], "analyses": { "subjects": [ "35J62", "35J25", "35J93", "35B38", "53A10" ], "keywords": [ "constant mean curvature equation", "hyperbolic space", "dirichlet problem", "maximum principles theory", "establish gradient estimates" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }