{ "id": "1912.07825", "version": "v1", "published": "2019-12-17T05:24:53.000Z", "updated": "2019-12-17T05:24:53.000Z", "title": "Properties of equilibrium states for geodesic flows over manifolds without focal points", "authors": [ "Dong Chen", "Lien-Yung Kao", "Kiho Park" ], "comment": "Comments are welcome", "categories": [ "math.DS" ], "abstract": "We prove that for closed rank 1 manifolds without focal points the equilibrium states are unique for H\\\"older potentials satisfying the pressure gap condition. In addition, we provide a criterion for a continuous potential to satisfy the pressure gap condition. Moreover, we derive several ergodic properties of the unique equilibrium states including the equidistribution and the K-property.", "revisions": [ { "version": "v1", "updated": "2019-12-17T05:24:53.000Z" } ], "analyses": { "keywords": [ "focal points", "geodesic flows", "pressure gap condition", "unique equilibrium states", "ergodic properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }