{ "id": "1912.07541", "version": "v1", "published": "2019-12-16T17:46:54.000Z", "updated": "2019-12-16T17:46:54.000Z", "title": "Computational Results on the Existence of Primitive Complete Normal Basis Generators", "authors": [ "Dirk Hachenberger", "Stefan Hackenberg" ], "comment": "17 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We present computational results which strongly support a conjecture of Morgan and Mullen (1996), which states that for every extension $E/F$ of Galois fields there exists a primitive element of $E$ which is completely normal over $F$.", "revisions": [ { "version": "v1", "updated": "2019-12-16T17:46:54.000Z" } ], "analyses": { "subjects": [ "11T30", "12E20" ], "keywords": [ "primitive complete normal basis generators", "computational results", "galois fields", "conjecture" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }