{ "id": "1912.07159", "version": "v1", "published": "2019-12-16T02:09:04.000Z", "updated": "2019-12-16T02:09:04.000Z", "title": "Torsion of rational elliptic curves over different types of cubic fields", "authors": [ "Daeyeol Jeon", "Andreas Schweizer" ], "comment": "15 pages", "categories": [ "math.NT" ], "abstract": "Let $E$ be an elliptic curve defined over $\\Q$, and let $G$ be the torsion group $E(K)_{tors}$ for some cubic field $K$ which does not occur over $\\Q$. In this paper, we determine over which types of cubic number fields (cyclic cubic, non-Galois totally real cubic, complex cubic or pure cubic) $G$ can occur, and if so, whether it can occur infinitely often or not. Moreover, if it occurs, we provide elliptic curves $E/\\Q$ together with cubic fields $K$ so that $G= E(K)_{tors}$.", "revisions": [ { "version": "v1", "updated": "2019-12-16T02:09:04.000Z" } ], "analyses": { "subjects": [ "11G05", "11G18" ], "keywords": [ "rational elliptic curves", "cubic field", "cubic number fields", "non-galois totally real cubic", "pure cubic" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }