{ "id": "1912.06503", "version": "v1", "published": "2019-12-13T14:08:35.000Z", "updated": "2019-12-13T14:08:35.000Z", "title": "Almost Sure Central Limit Theorems in Stochastic Geometry", "authors": [ "Giovanni-Luca Torrisi", "Emilio Leonardi" ], "categories": [ "math.PR" ], "abstract": "We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals emerging in stochastic geometry. As a consequence, we provide almost sure central limit theorems for $(i)$ the total edge length of the $k$-nearest neighbors random graph, $(ii)$ the clique count in random geometric graphs, $(iii)$ the volume of the set approximation via the Poisson-Voronoi tessellation.", "revisions": [ { "version": "v1", "updated": "2019-12-13T14:08:35.000Z" } ], "analyses": { "subjects": [ "60F05", "60G55", "60H07", "60D05" ], "keywords": [ "sure central limit theorem", "stochastic geometry", "nearest neighbors random graph", "total edge length", "random geometric graphs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }