{ "id": "1912.06490", "version": "v1", "published": "2019-12-12T15:50:18.000Z", "updated": "2019-12-12T15:50:18.000Z", "title": "Global existence and decay estimates for the heat equation with exponential nonlinearity", "authors": [ "Mohamed Majdoub", "Slim Tayachi" ], "comment": "To appear. arXiv admin note: text overlap with arXiv:1607.02723, arXiv:1606.07320", "categories": [ "math.AP", "math.FA" ], "abstract": "In this paper we consider the initial value {problem $\\partial_{t} u- \\Delta u=f(u),$ $u(0)=u_0\\in exp\\,L^p(\\mathbb{R}^N),$} where $p>1$ and $f : \\mathbb{R}\\to\\mathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on the initial data and for nonlinearity $f$ {such that $|f(u)|\\sim \\mbox{e}^{|u|^q}$ as $|u|\\to \\infty$,} $|f(u)|\\sim |u|^{m}$ as $u\\to 0,$ $01$, we show that the solution is global. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m.$", "revisions": [ { "version": "v1", "updated": "2019-12-12T15:50:18.000Z" } ], "analyses": { "keywords": [ "decay estimates", "exponential nonlinearity", "global existence", "heat equation", "initial value" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }