{ "id": "1912.06427", "version": "v1", "published": "2019-12-13T11:46:07.000Z", "updated": "2019-12-13T11:46:07.000Z", "title": "On a conjecture about cellular characters for the complex reflection group $G(d,1,n)$", "authors": [ "Abel Lacabanne" ], "comment": "24 pages, comments welcome", "categories": [ "math.RT", "math.QA" ], "abstract": "We propose a conjecture relating two different sets of characters for the complex reflection group $G(d,1,n)$. From one side, the characters are afforded by Calogero-Moser cells, a conjectural generalisation of Kazhdan-Lusztig cells for a complex reflection group. From the other side, the characters arise from a level $d$ irreducible integrable representations of $\\mathcal{U}_q(\\mathfrak{sl}_{\\infty})$. We prove this conjecture in some cases: in full generality for $G(d,1,2)$ and for generic parameters for $G(d,1,n)$.", "revisions": [ { "version": "v1", "updated": "2019-12-13T11:46:07.000Z" } ], "analyses": { "keywords": [ "complex reflection group", "cellular characters", "conjecture", "generic parameters", "full generality" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }