{ "id": "1912.05473", "version": "v1", "published": "2019-12-11T17:10:03.000Z", "updated": "2019-12-11T17:10:03.000Z", "title": "Quantitative Universality for the Largest Eigenvalue of Sample Covariance Matrices", "authors": [ "Haoyu Wang" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "We prove the first explicit rate of convergence to the Tracy-Widom distribution for the fluctuation of the largest eigenvalue of sample covariance matrices that are not integrable. Our primary focus is matrices of type $ X^*X $ and the proof follows the Erd\\\"{o}s-Schlein-Yau dynamical method. We use a recent approach to the analysis of the Dyson Brownian motion from [5] to obtain a quantitative error estimate for the local relaxation flow at the edge. Together with a quantitative version of the Green function comparison theorem, this gives the rate of convergence. Combined with a result of Lee-Schnelli [26], some quantitative estimates also hold for more general separable sample covariance matrices $ X^* \\Sigma X $ with general diagonal population $ \\Sigma $.", "revisions": [ { "version": "v1", "updated": "2019-12-11T17:10:03.000Z" } ], "analyses": { "subjects": [ "60B20", "15B52" ], "keywords": [ "largest eigenvalue", "quantitative universality", "general separable sample covariance matrices", "green function comparison theorem", "first explicit rate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }