{ "id": "1912.03411", "version": "v1", "published": "2019-12-07T01:57:01.000Z", "updated": "2019-12-07T01:57:01.000Z", "title": "About the uniqueness of the hyperspaces $C(p,X)$ in some classes of continua", "authors": [ "Florencio Corona-Vázquez", "Russell Aarón Quiñones-Estrella", "Javier Sánchez-Martínez" ], "comment": "12 pages", "categories": [ "math.GN" ], "abstract": "Given a continuum $X$ and $p\\in X$, we will consider the hyperspace $C(p,X)$ of all subcontinua of $X$ containing $p$. Given a family of continua $\\mathcal{C}$, a continuum $X\\in\\mathcal{C}$ and $p\\in X$, we say that $(X,p)$ has unique hyperspace $C(p,X)$ relative to $\\mathcal{C}$ if for each $Y\\in\\mathcal{C}$ and $q\\in Y$ such that $C(p,X)$ and $C(q,Y)$ are homeomorphic, then there is an homeomorphism between $X$ and $Y$ sending $p$ to $q$. In this paper we show that $(X,p)$ has unique hyperspace $C(p,X)$ relative to the classes of dendrites if and only if $X$ is a tree, we present also some classes of continua without unique hyperspace $C(p,X)$; this answer some questions posed in \\cite{Corona.et.al(2019)}.", "revisions": [ { "version": "v1", "updated": "2019-12-07T01:57:01.000Z" } ], "analyses": { "keywords": [ "unique hyperspace", "uniqueness", "subcontinua" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }