{ "id": "1912.03325", "version": "v1", "published": "2019-12-06T19:35:35.000Z", "updated": "2019-12-06T19:35:35.000Z", "title": "Coherent categorification of quantum loop algebras : the $SL(2)$ case", "authors": [ "Peng Shan", "Michela Varagnolo", "Eric Vasserot" ], "comment": "58 pages", "categories": [ "math.RT" ], "abstract": "We construct an equivalence of graded Abelian categories from a category of representations of the quiver-Hecke algebra of type $A_1^{(1)}$ to the category of equivariant perverse coherent sheaves on the nilpotent cone of type $A$. We prove that this equivalence is weakly monoidal. This gives a representation-theoretic categorification of the preprojective K-theoretic Hall algebra considered by Schiffmann-Vasserot. Using this categorification, we compare the monoidal categorification of the quantum open unipotent cells of type $A_1^{(1)}$ given by Kang-Kashiwara-Kim-Oh-Park in terms of quiver-Hecke algebras with the one given by Cautis-Williams in terms of equivariant perverse coherent sheaves on the affine Grassmannians.", "revisions": [ { "version": "v1", "updated": "2019-12-06T19:35:35.000Z" } ], "analyses": { "keywords": [ "quantum loop algebras", "coherent categorification", "equivariant perverse coherent sheaves", "quiver-hecke algebra", "quantum open unipotent cells" ], "note": { "typesetting": "TeX", "pages": 58, "language": "en", "license": "arXiv", "status": "editable" } } }